## **Supplementary Material**

# A facile and environmentally benign synthesis of 2*H*-benzo[*b*] [1,4] oxazines of potential biological importance

Betokali K. Zhimomi,<sup>a</sup> Putusenla Imchen,<sup>a</sup> Manthae Phom,<sup>a</sup> Phitovili Achumi,<sup>a</sup> Shokip Tumtin,<sup>b</sup> Toka Swu,<sup>c</sup> and Tovishe Phucho<sup>a\*</sup>

a Department of Chemistry, Nagalad University, Lumami 798627, Zunheboto, Nagaland, India b Department of Chemistry, Fazl Ali College, Mokukchung 798601, Nagaland, India c Department of Chemistry, Pondicherry University, Kalapet 605014, Pududcherry, India Email: <u>itphucho@nagalanduniversity.ac.in</u>

### **Table of Contents**

| Material and methods                                                         | S2 |
|------------------------------------------------------------------------------|----|
| <sup>1</sup> HNMR, <sup>13</sup> CNMR, Mass spectra of compound <b>3a-3o</b> | S3 |

#### MATERIALS AND METHODS

All reagents were purchased from Merck and used without purification. Reactions were carried out in Microwave Digester (Anton paar Monowave 400). Melting points were measured on Ikon melting point apparatus and compared with reported values of known compounds. IR spectra were recorded on FTIR spectrometer (Perkin Elmer 1725X, Model: Spectrum Two FT-IR). Mass spectra were recorded on mass spectrophotometer (Advion expressions). NMR spectra were recorded with a Bruker spectrometer at 400 MHz (<sup>1</sup>H NMR) and at 100 MHz (<sup>13</sup>C NMR) in CDCl<sub>3</sub> as solvent and with TMS as internal standard; and chemical shifts are expressed as d/ppm.







Figure 2: <sup>1</sup>HNMR NMR of 3a







Figure 4: Mass spectra of 3b



Figure 4: <sup>1</sup>HNMR NMR of 3b

Special Issue 'Heterocyclic Chemistry'



Figure 6: <sup>13</sup>CNMR NMR of 3b



Figure 7: Mass spectra of 3c



Figure 8: <sup>1</sup>HNMR NMR of 3c



Figure 9: <sup>13</sup>CNMR NMR of 3c



Figure 10: Mass spectra of 3d



Figure 11: <sup>1</sup>HNMR NMR of 3d



Figure 12: <sup>13</sup>CNMR NMR of 3d



Figure 13: Mass spectra of 3e



Figure 14: <sup>1</sup>HNMR NMR of 3e



Figure 15: <sup>13</sup>CNMR NMR of 3e



#### Figure 16: Mass spectra of 3f



Figure 17: <sup>1</sup>HNMR NMR of 3f



Figure 18: <sup>13</sup>CNMR NMR of 3f



Figure 19: Mass spectra of 3g



Figure 20: <sup>1</sup>HNMR NMR of 3g



Figure 21: <sup>13</sup>CNMR NMR of 3g







Figure 23: <sup>1</sup>HNMR NMR of 3h



Figure 24: <sup>13</sup>CNMR NMR of 3h



Figure 25: Mass spectra of 3i



Figure 26: <sup>1</sup>HNMR NMR of 3i



Figure 27: <sup>13</sup>CNMR NMR of 3i



Figure 28: Mass Spectra of 3j



Figure 29: <sup>1</sup>HNMR NMR of 3j



Figure 30: <sup>13</sup>CNMR NMR of 3j



Figure 31: Mass spectra of 3k



Figure 32: <sup>1</sup>HNMR NMR of 3k



Figure 33: <sup>13</sup>CNMR NMR of 3k



Figure 34: Mass spectra of 31



Figure 35: <sup>1</sup>HNMR NMR of 3I



Figure 36: <sup>13</sup>CNMR NMR of 3I



Figure 37: Mass spectra of 3m



Figure 38: <sup>1</sup>HNMR NMR of 3m



Figure 39: <sup>13</sup>CNMR NMR of 3m







Figure 41: <sup>1</sup>HNMR NMR of 3n



Figure 42: <sup>13</sup>CNMR NMR of 3n



#### Figure 43: Mass spectra of 30



Figure 44: <sup>1</sup>HNMR NMR of 30



Figure 45: <sup>13</sup>CNMR NMR of 3o